今天给各位分享高一年级物理公式归纳的知识,其中也会对机械效率η=G/(nF)=G物/(G物+G动)定义式适用于动滑轮、滑轮组进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文导读目录:

1、高中物理公式大全最新整理

2、物理高中公式大全 有哪些常用公式

3、高一年级物理公式归纳

  2020-04-24 13:55:06文/刘思琪   物理是研究物质运动最一般规律和物质基本结构的学科,是高中理科非常重要的一门学科。下面小编整理了高中物理公式,供大家参考。   一、匀变速直线运动   1.平均速度V=s/t(定义式)   2.有用推论Vt2-Vo2=2as   3.中间时刻速度Vt/2=V平=(Vt+Vo)/2   4.末速度Vt=Vo+at   5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2   6.位移s=V平t=Vot+at2/2=Vt/2t   7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}   8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}   注:   (1)平均速度是矢量;   (2)物体速度大,加速度不一定大;   (3)a=(Vt-Vo)/t只是量度式,不是决定式;   二、自由落体运动   1.初速度Vo=0   2.末速度Vt=gt   3.下落高度h=gt2/2(从Vo位置向下计算)   4.推论Vt2=2gh   三、竖直上抛运动   1.位移s=Vot-gt2/2   2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)   3.有用推论Vt2-Vo2=-2gs   4.上升最大高度Hm=Vo2/2g(抛出点算起)   5.往返时间t=2Vo/g(从抛出落回原位置的时间)   四、平抛运动   1.水平方向速度:Vx=Vo   2.竖直方向速度:Vy=gt   3.水平方向位移:x=Vot   4.竖直方向位移:y=gt2/2   5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)   6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2   合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0   7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo   8.水平方向加速度:ax=0;竖直方向加速度:ay=g   五、匀速圆周运动   1.线速度V=s/t=2πr/T   2.角速度ω=Φ/t=2π/T=2πf   3.向心加速度a=V2/r=ω2r=(2π/T)2r   4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合   5.周期与频率:T=1/f   6.角速度与线速度的关系:V=ωr   7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)   六、万有引力   1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}   2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)   3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m)M:天体质量(kg)}   4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}   5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s   6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}   注:   (1)天体运动所需的向心力由万有引力提供,F向=F万;   (2)应用万有引力定律可估算天体的质量密度等;   (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;   (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);   (5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。   七、常见的力   1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)   2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}   3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}   4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)   5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)   6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)   7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)   8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)   9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)   八、力的合成与分解   1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)   2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2   3.合力大小范围:|F1-F2|≤F≤|F1+F2|   4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)   九、动力学(运动和力)   1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止   2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}   3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}   4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}   5.超重:FN>G,失重:FN   6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子   十、振动和波(机械振动与机械振动的传播)   1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}   2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}   3.受迫振动频率特点:f=f驱动力   4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用   6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}   7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)   8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大   9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)   注:   (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;   (2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;   (3)干涉与衍射是波特有的;   十一、动量及动量定理   1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}   2.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}   3.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}   4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′   5.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}   6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的最大动能}   7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}   8.物体m1以v1初速度与静止的物体m2发生弹性正碰:   v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)   9.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)   10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失   E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}   十二、功   1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}   2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}   3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}   4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}   5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}   6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}   7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)   8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}   9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}   10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt   11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}   12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}   13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}   14.动能定理(对物体做正功,物体的动能增加):   W合=mvt2/2-mvo2/2或W合=ΔEK   {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}   15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2   16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP   注:   (1)功率大小表示做功快慢,做功多少表示能量转化多少;   (2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);   (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少   (4)重力做功和电场力做功均与路径无关(见2、3两式);   (5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的   (6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。   十三、分子动理论、能量守恒定律   1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米   2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}   3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。   4.分子间的引力和斥力   (1)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)   (2)r>r0,f引>f斥,F分子力表现为引力   (3)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0   5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),   W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出   6.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}   注:   (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;   (2)温度是分子平均动能的标志;   3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;   (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;   (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0   (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;   (7)r0为分子处于平衡状态时,分子间的距离;   十四、电场   1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍   2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}   3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}   4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}   5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}   6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}   7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q   8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}   9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}   10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}   11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)   12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}   13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)   14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2   15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)   类平抛垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)   抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m   注:   (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;   (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;   (3)常见电场的电场线分布要求熟记   (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;   (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;   (6)电容单位换算:1F=106μF=1012PF;   (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;   十五、恒定电流   1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}   2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}   3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}   4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外   {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}   5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}   6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}   7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R   8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}   9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)   电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+   电流关系I总=I1=I2=I3I并=I1+I2+I3+   电压关系U总=U1+U2+U3+U总=U1=U2=U3   十六、欧姆表测电阻   1.(1)测量原理   两表笔短接后,调节Ro使电表指针满偏,得   Ig=E/(r+Rg+Ro)   接入被测电阻Rx后通过电表的电流为   Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)   由于Ix与Rx对应,因此可指示被测电阻大小   (2)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。   (3)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。   2.伏安法测电阻   电流表内接法:   电压表示数:U=UR+UA   电流表外接法:   电流表示数:I=IR+IV   Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真   Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)   选用电路条件Rx>>RA[或Rx>(RARV)1/2]   选用电路条件Rx<   3.滑动变阻器在电路中的限流接法与分压接法   限流接法   电压调节范围小,电路简单,功耗小   便于调节电压的选择条件Rp>Rx   电压调节范围大,电路复杂,功耗较大   便于调节电压的选择条件Rp   注(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω   (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;   (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;   (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;   (5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);   十七、磁场   1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m   2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}   3.洛仑兹力f=qVB(注V⊥B);{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}   4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):   (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0   (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。   注:   (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;   十八、电磁感应   1.(1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}   (2)E=BLV垂(切割磁感线运动){L:有效长度(m)}   (3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}   (4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}   2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}   3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}   十九、交变电流(正弦式交变电流)   1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)   2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总   3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2   4.理想变压器原副线圈中的电压与电流及功率关系   U1/U2=n1/n2;I1/I2=n2/n2;P入=P出   5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)   6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);   S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。   注:   (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;   (2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;   (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;   (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;   二十、电磁振荡和电磁波   1.LC振荡电路T=2π(LC)1/2;f=1/T{f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}   2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f{λ:电磁波的波长(m),f:电磁波频率}   注:   (1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;   (2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;   二十一、光的反射和折射(几何光学)   1.反射定律α=i{α;反射角,i:入射角}   2.绝对折射率(光从真空中到介质)n=c/v=sin/sin{光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速,:入射角,:折射角}   3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n   2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角   注:   (1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;   (2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;   二十二、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)   1.两种学说:微粒说(牛顿)、波动说(惠更斯)   2.双缝干涉:中间为亮条纹;亮条纹位置:=nλ;暗条纹位置:=(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距{:路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}   3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)   4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4   5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播   6.光的偏振:光的偏振现象说明光是横波   7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用   8.光子说,一个光子的能量E=hν{h:普朗克常量=6.63×10-34J.s,ν:光的频率}   9.爱因斯坦光电效应方程:mVm2/2=hν-W{mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}   二十三、原子和原子核   1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)   2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)   3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}   4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数   5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。   6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}   7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}。  2021-11-25 10:50:31文/李傲   物理科目有很多重要的公式在考试的时候用得到,小编整理了物理公式如下,大家快来看看吧!   一、匀变速直线运动   1、平均速度V平=s/t(定义式)   2、有用推论Vt2-Vo2=2as   3、中间时刻速度Vt/2=V平=(Vt+Vo)/2   4、末速度Vt=Vo+at   5、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2   6、位移s=V平t=Vot+at2/2=Vt/2t   7、加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}   8、实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}   9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。   二、自由落体运动   1、初速度Vo=0   2、末速度Vt=gt   3、下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh   注:①自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;   ②a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。   三、竖直上抛运动   1、位移s=Vot-gt2/2   2、末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)   3、有用推论Vt2-Vo2=-2gs   4、上升最大高度Hm=Vo2/2g(抛出点算起)   5、往返时间t=2Vo/g (从抛出落回原位置的时间)   注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;   (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;   (3)上升与下落过程具有对称性,如在同点速度等值反向等。   四、平抛运动   1、水平方向速度:Vx=Vo   2、竖直方向速度:Vy=gt   3、水平方向位移:x=Vot   4、竖直方向位移:y=gt2/2   5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)   6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0   7、合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo   8、水平方向加速度:ax=0;竖直方向加速度:ay=g   五、常见的力   1、重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)   2、胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}   3、滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}   4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)   5、万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)   6、静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)   7、电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)   8、安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)   9、洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)   六、动力学   1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止   2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}   3、牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}   4、共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}   5、超重:FN>G,失重:FN>r}   3、受迫振动频率特点:f=f驱动力   4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用   5、机械波、横波、纵波   6、滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}   7、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)   8、万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)   9、静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)   10、电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)   11、安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0   12、洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)   八、分子动理论、能量守恒定律   1、阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米   2、油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}   3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。   4、分子间的引力和斥力   (1)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)   (2)r>r0,f引>f斥,F分子力表现为引力   (3)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0   5、热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出。   6、热力学第二定律   克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性)   7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}   九、功和能   1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}   2、重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}   3、电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}   4、电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}   5、功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}   6、汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}   7、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)   8、电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}   9、焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}   10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt   上课   上课要认真听讲,不走思或尽量少走思。不要自以为是,要虚心向老师学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。   笔记本   上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。   学习资料   学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。作记号是指,比方说对练习题吧,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。  【导语】进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。®无忧考网高一频道为正在努力学习的你整理了《高一年级物理公式归纳》,希望对你有帮助!   1.高一年级物理公式归纳   动力学(运动和力)   1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止   2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}   3.牛顿第三运动定律:F=-F??{负号表示方向相反,F、F??各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}   4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}   5.超重:FN>G,失重:FN   6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕   注:   平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。   2.高一年级物理公式归纳   1、功   (1)功的大小:W=Fscosθ   (2)总功的求法:   W总=W1+W2+W3……Wn   W总=F合scosθ   2、功率   (1)P=W/t此公式求的是平均功率   (2)功率的另一个表达式:P=Fvcosθ此公式即可求平均功率,也可求瞬时功率   1)平均功率:当v为平均速度时   2)瞬时功率:当v为t时刻的瞬时速度   (3)正常工作时:实际功率≤额定功率   (4)机车运动问题(前提:阻力f恒定)   P=Fv,F=ma+f(由牛顿第二定律得)   汽车启动有两种模式   1)汽车以恒定功率启动(a在减小,一直到0)   P恒定,v在增加,F在减小,有F=ma+f   当F减小=f时,v此时有值,vmax=P/f   2)汽车以牵引力启动(a开始恒定,再逐渐减小到0)   a恒定,F不变(F=ma+f),v在增加,P逐渐增加至额定功率   后P恒定,v在增加,F在减小,有F=ma+f   当F减小=f时,v此时有值,vmax=P/f   3、动能、动能定理   (1)动能Ek=mv2/2   (2)动能定理W合=ΔEk=mv2/2-mv02/2   4、重力势能   (1)Ep=mgh   (2)WG=-ΔEp   5、弹性势能   (1)Ep=kx2/2   (2)W=-ΔEp   6、机械能守恒定律   只有保守力(重力、弹性力)做功的情况下,物体的动能和势能发生相互转化,但机械能保持不变   表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有保守力做功   3.高一年级物理公式归纳   重力G(N)G=mg;m:质量;g:9.8N/kg或者10N/kg   密度ρ(kg/m3)ρ=m/Vm:质量;V:体积   合力F合(N)方向相同:F合=F1+F2[6]   方向相反:F合=F1-F2方向相反时,F1>F2   浮力F浮(N)F浮=G物-G视;G视:物体在液体的视重(测量值)   浮力F浮(N)F浮=G物;此公式只适用物体漂浮或悬浮   浮力F浮(N)F浮=G排=m排g=ρ液gV排;G排:排开液体的重力,m排:排开液体的质量,ρ液:液体的密度,V排:排开液体的体积(即浸入液体中的体积)   杠杆的平衡条件F1L1=F2L2;F1:动力,L1:动力臂,F2:阻力,L2:阻力臂   定滑轮F=G物,S=h,F:绳子自由端受到的拉力,G物:物体的重力,S:绳子自由端移动的距离,h:物体升高的距离   动滑轮F=(G物+G轮)/2,S=2h,G物:物体的重力,G轮:动滑轮的重力   滑轮组F=(G物+G轮)/n,S=nh,n:承担物重的段数   机械功W(J)W=FsF:力S:在力的方向上移动的距离   有用功:W有,总功:W总,W有=G物h,W总=Fs,适用滑轮组竖直放置时机械效率η=W有/W总×100%   功W=Fs=Pt;1J=1N·m=1W·s   功率P=W/t=Fv(匀速直线)1kW=103W,1MW=103kW   有用功W有用=Gh=W总–W额=ηW总   额外功W额=W总–W有=G动h(忽略轮轴间摩擦)=fL(斜面)   总功W总=W有用+W额=Fs=W有用/η   机械效率η=G/(nF)=G物/(G物+G动)定义式适用于动滑轮、滑轮组   功率P(w)P=W/t;W:功;t:时间   压强p(Pa)P=F/SF:压力/S:受力面积   液体压强p(Pa)P=ρghP:液体的密度h:深度(从液面到所求点的竖直距离)   热量Q(J)Q=cm△tc:物质的比热容m:质量,△t:温度的变化值   燃料燃烧放出的热量Q(J)Q=mq;m:质量,q:热值   4.高一年级物理公式归纳   速度Vt=Vo+at   位移s=Vot+at2/2=V平t=Vt/2t   有用推论Vt2-Vo2=2as   平均速度V平=s/t(定义式)   中间时刻速度Vt/2=V平=(Vt+Vo)/2   中间位置速度Vs/2=√[(Vo2+Vt2)/2]   加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)   互成角度力的合成:   F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2   合力大小范围:|F1-F2|≤F≤|F1+F2|   力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)   注:(1)力(矢量)的合成与分解遵循平行四边形定则;   (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;   (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;   (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;   (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.   线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf   向心加速度a=V^2/R=ω^2R=(2π/T)^2R4.向心力F心=Mv^2/R=mω^2_R=m(2π/T)^2_R   周期与频率T=1/f6.角速度与线速度的关系V=ωR   角速度与转速的关系ω=2πn(此处频率与转速意义相同)   主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)   周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s   角速度(ω):rad/s向心加速度:m/s2   注:   (1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。   (2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。   5.高一年级物理公式归纳   匀变速直线运动   1.平均速度V平=s/t(定义式)   2.有用推论Vt2-Vo2=2ax   3.中间时刻速度Vt/2=V平=(Vt+Vo)/2   4.末速度Vt=Vo+at   5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2   6.位移s=V平t=Vot+at2/2=Vt/2t   7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a   8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}   注:   (1)平均速度是矢量;   (2)物体速度大,加速度不一定大;   (3)a=(Vt-Vo)/t只是量度式,不是决定式;   6.高一年级物理公式归纳   自由落体运动   1.初速度Vo=0   2.末速度Vt=gt   3.下落高度h=gt2/2(从Vo位置向下计算)   4.推论Vt2=2gh   竖直上抛运动   1.位移s=Vot-gt2/2   2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)   3.有用推论Vt2-Vo2=-2gs   4.上升高度Hm=Vo2/2g(抛出点算起)   5.往返时间t=2Vo/g(从抛出落回原位置的时间)   平抛运动   1.水平方向速度:Vx=Vo   2.竖直方向速度:Vy=gt   3.水平方向位移:x=Vot   4.竖直方向位移:y=gt2/2   5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)   6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2   合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0   7.合位移:s=(x2+y2)1/2,   位移方向与水平夹角α:tgα=y/x=gt/2Vo   8.水平方向加速度:ax=0;竖直方向加速度:ay=g
高一年级物理公式归纳的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于机械效率η=G/(nF)=G物/(G物+G动)定义式适用于动滑轮、滑轮组高一年级物理公式归纳的信息别忘了在本站进行查找喔。

未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处

原文地址:http://www.com-u.net/post/4549.html发布于:2025-11-30